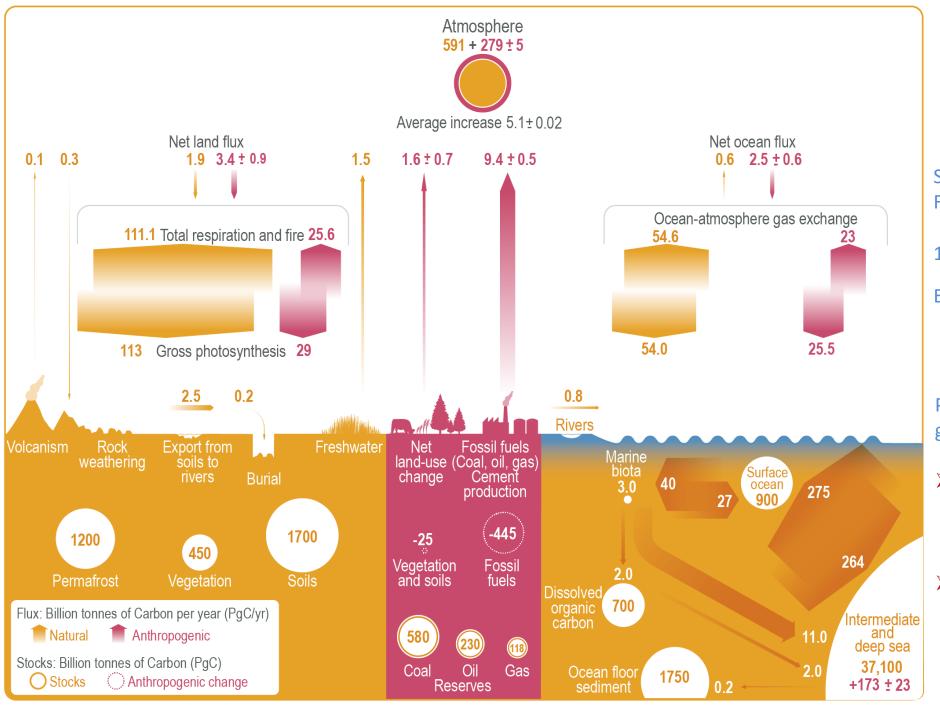


15 maggio 2025 - 14.00/18.30

INGEGNERIA E OPPORTUNITÀ IMPRENDITORIALI PER GOVERNARE I CAMBIAMENTI CLIMATICI


Università Ca' Foscari Venezia - Auditorium Danilo Mainardi Campus Scientifico Via Torino 155 Edificio Alfa, Venezia Mestre

TECNOLOGIE ISPIRATE AI PROCESSI NATURALI PER LA RIMOZIONE DI ANIDRIDE CARBONICA DALL'ATMOSFERA

Enrico Bertuzzo Università Ca' Foscari di Venezia

Scenari Emissioni IPCC

IPPC report 6, Figura 5.12

Stock: GtC (miliardi di ton. di C)

Flussi: GtC/anno

1 GtC = 3.67 Gt CO₂

Emissioni globali: 40 Gt CO₂ /anno

Per contenere riscaldamento globale sui 1.5-2 °C per il 2100:

- Riduzione (fino quasi all'azzeramento) delle emissioni antropiche
- Rimozione della CO₂ dall'atmosfera nella seconda metà del secolo: ordine di grandezza 1-10 Gt CO₂

Tecniche di Riduzione e Rimozione

- Riduzione: Carbon Capture and Storage (CCS)
- Rimozione: Carbon Dioxide Removal (CDR)

Carbon Capture and Storage. CCS

Cattura della CO₂ dalle sorgenti puntuali di emissione (e.g. impianti a combustione) e stoccaggio per tempi climaticamente significativi (migliaia di anni)

Vantaggi: flusso di emissione concentrato in CO₂ permette di separarla con un costo energetico (relativamente) contenuto

Svantaggi: contribuisce alla riduzione delle emissioni ma non alla rimozione di CO₂ dall' atmosfera

ERW ECO-BASED BECCS

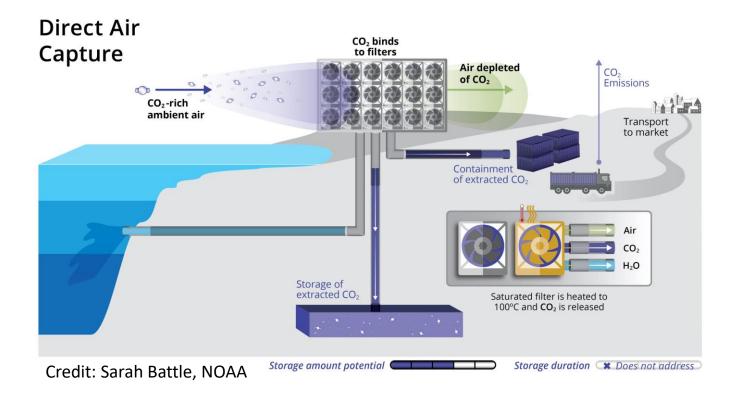
Credit: Atmospheric Carbon Dioxide Removal A Physical Science Perspective

Carbon Dioxide Removal. CDR

Rimozione della CO₂ dall'atmosfera (emissioni negative)

DAC: Direct Air Capture

ECO-BASED


BECCS: Bioenergy with Carbon Capture and Storage

ERW: Enhanced Rock Weathering

OAE: Ocean Alkalinity Enhancement

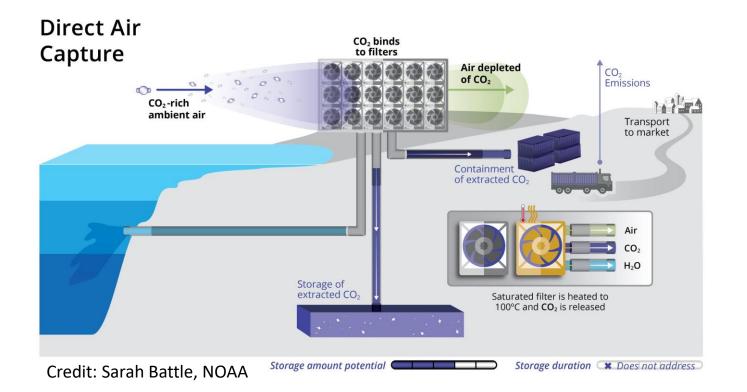
Svantaggi: concentrazione CO₂ in atmosfera bassa: grossi quantità di energia o materia per rimuoverla

Atmosphere w/ 400+ ppm CO₂ Binding Process Separation Process Pure CO₂ Material with reduced CO₂ Material with bound CO₂

CDR ciclici Direct Air Capture

Vantaggi:

- Limitato consumo di suolo e materiale,
- Measurement Reporting and Verification (MVR) facile


Svantaggi:

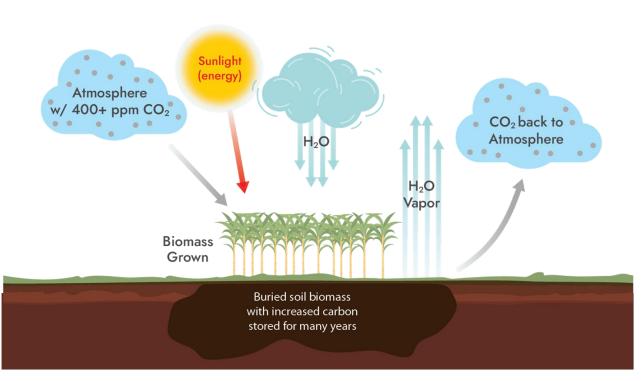
consumo energetico

Opportunità di ricerca:

 Ottimizzazione energetica, ricerca sui materiali, scalabilità

Atmosphere w/ 400+ ppm CO₂ Binding Process Separation Process Pure CO₂ Material with reduced CO₂ Material with bound CO₂

CDR ciclici Direct Air Capture


Consumo energetico

- Limite termodinamico: 120 kWh/tCO₂
- Impianti reali: da 3 a 10 volte il limite termodinamico
- 1 Gt CO_2 = 14 GWy (30-100 GWy)
- Produzione mondiale: 3300 GWy

Volume aria da filtrare

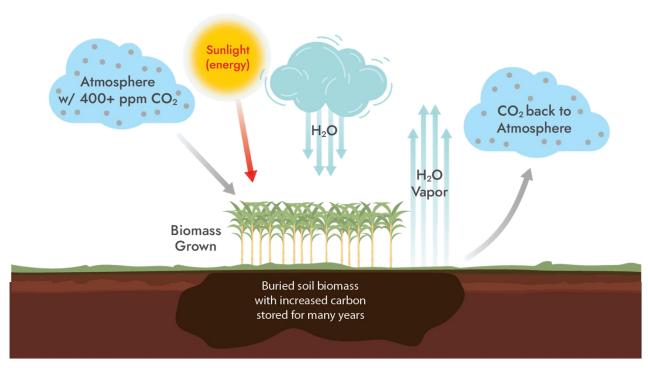
- 10¹⁵ m³/y
- Comparabile con tutta l'aria utilizzata globalmente per raffreddare i circuiti dei condizionatori

CDR Non Cicicli Ecosistemici

Credit: Atmospheric Carbon Dioxide Removal A Physical Science Perspective

Vantaggi:

Energia solare

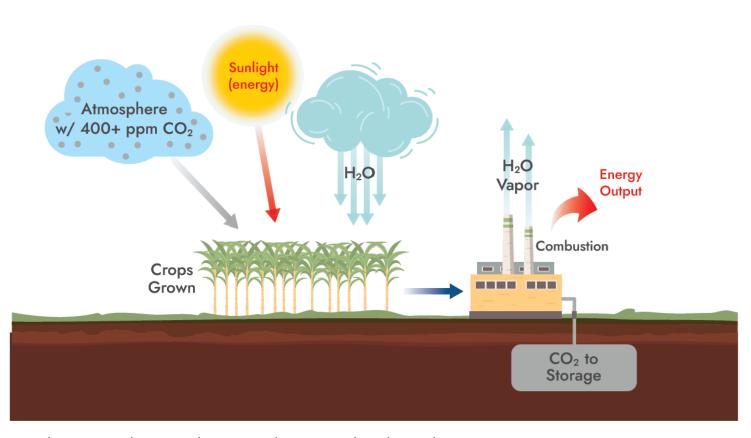

Svantaggi:

- Measurement Reporting and Verification (MRV) difficile
- Difficile distinguere processi naturali da quelli indotti, quantificare l'effettivo stoccaggio e la durata
- Consumo di suolo in competizione con agricoltura
- Consumo di acqua

Opportunità di ricerca:

- Miglioramento di MRV
- Sviluppo specie con alta efficienza fotosintetica

CDR Non Cicicli Ecosistemici



Credit: Atmospheric Carbon Dioxide Removal A Physical Science Perspective

Consumo di suolo

- Efficienza fotosintesi 0.25-0.5%
- 1 $GtCO_2 = 0.35$ milioni km²
- Area agricola Stati Uniti 3.6 milioni km²
- Area agricola globale 40 milioni km²
- Organismi ingegnerizzati con efficienza
 3-6 %: area necessaria 35000 km²

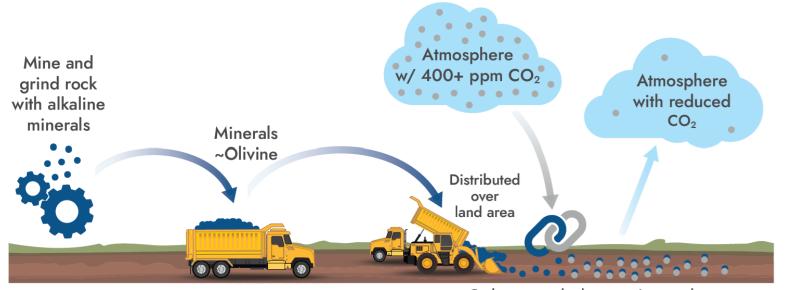
CDR Non Cicicli Bioenergia con CCS

Credit: Atmospheric Carbon Dioxide Removal A Physical Science Perspective

Vantaggi:

- Più efficiente dei sistemi ecosistemici
- Recupero energia (emissioni negative)
- Measurement Reporting and Verification (MRV) facile

Svantaggi:


- Consumo di suolo in competizione con agricoltura
- Consumo di acqua

Opportunità di ricerca:

 Sviluppo specie con alta efficienza fotosintetica

CDR Non Cicicli Enhanced Rock Weathering

$Mg_2SiO_4 + 2CO_2 \rightarrow 2MgCO_3 + SiO_2 + 90 \text{ kJ/mol}$

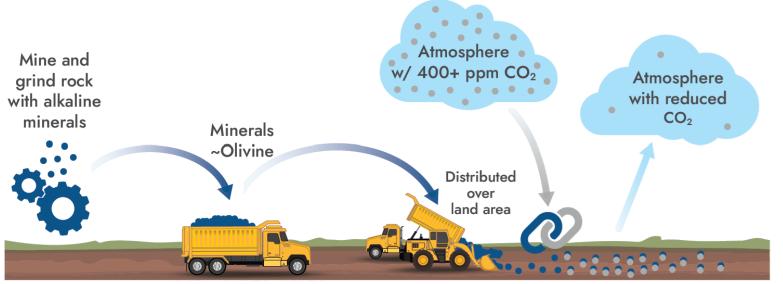
Carbonate and other reaction products

Credit: Atmospheric Carbon Dioxide Removal A Physical Science Perspective

Vantaggi:

 Basso consumo energetico: legato allo sforzo di estrazione e trasporto (non rigenerato)

Svantaggi:


- Ingenti quantità di materiale da trattare
- Measurement Reporting and Verification (MRV) difficile
- Difficile distinguere processi naturali da quelli indotti, quantificare l'effettivo stoccaggio e la durata
- Impatti sull'ecosistema incerti (inquinamento da metalli pesanti)

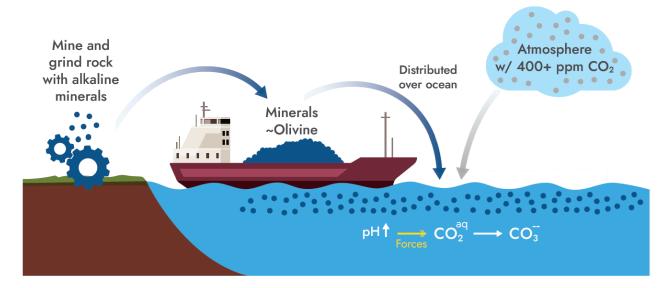
Opportunità di ricerca:

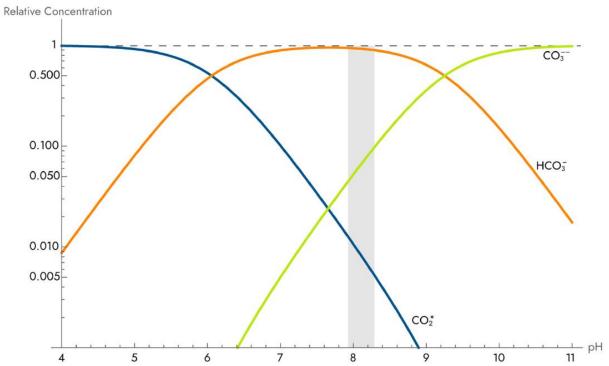
Miglioramento di MRV

CDR Non Cicicli Enhanced Rock Weathering

$Mg_2SiO_4 + 2CO_2 \rightarrow 2MgCO_3 + SiO_2 + 90 \text{ kJ/mol}$

Carbonate and other reaction products


Credit: Atmospheric Carbon Dioxide Removal A Physical Science Perspective


Consumo materiale

- 1 GtCO₂ = 1.5 Gt di Forsterite
- Produzione mineraria mondiale:20 Gt/y
- Produzione di materiale polverizzato Stati Uniti 1.5 Gt/y

Consumo energetico

 100 kWh/t per polverizzazione.
 Consumo energetico minore del limite termodinamico dei processi ciclici

Credit: Atmospheric Carbon Dioxide Removal A Physical Science Perspective

CDR Non Cicicli Ocean Alkalinity Enhancement

Vantaggi:

 Basso consumo energetico: legato allo sforzo di estrazione e trasporto

Svantaggi:

- Ingenti quantità di materiale da trattare
- Measurement Reporting and Verification (MRV) difficile
- Difficile distinguere processi naturali da quelli indotti, quantificare l'effettivo stoccaggio e la durata
- Impatti sull'ecosistema incerti

Opportunità di ricerca:

Miglioramento di MRV

CDR Conclusioni

- Costo previsto (DAC) 100-200 \$ tCO2
- Nessuna "legge di Moore" prevista per limiti fisici e termodinamici.
- Combustione di un litro di benzina produce 2.4 kg di CO₂. Il costo per rimuoverla ammonta ad un' "accisa" di 20-40 centesimi di €.
- Rischio: la disponibilità di tecniche di rimozione può rallentare lo sforzo di riduzione delle emissioni.
- Ridurre le emissioni è economicamente più conveniente che rimuovere la stessa quantità di CO2.
 Quindi le riduzioni devono essere considerate con più alta priorità. Rimozioni usate per raggiungere specifici target climatici entro la fine del secolo nel caso la velocità di riduzione delle emissioni non sia sufficiente.

15 maggio 2025 - 14.00/18.30

INGEGNERIA E OPPORTUNITÀ IMPRENDITORIALI PER GOVERNARE I CAMBIAMENTI CLIMATICI

Università Ca' Foscari Venezia - Auditorium Danilo Mainardi Campus Scientifico Via Torino 155 Edificio Alfa, Venezia Mestre

Grazie per l'attenzione

Terrestrial Ecosystem Stream Ecosystem **ER NEP** CO₂ source CO₂ sink NEP **GPP GPP** ET CO_2 Leaf-fall Litter-Fall Soil OC: SOC CO_2 POC, DOC POC DOC DIC ___ Created with BioRender.com